
Task Offloading using Multi-armed bandit Optimization in

Autonomous Mobile Robots

Anis Ur Rahman1, Asad Waqar Malik2, Hasan Ali Khattak2, Moayad Aloqaily3

1 University of Jyväskylä, Finland
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Introduction and motivation



Motivation: Industry 5.0

Industry 5.0 is a human-centered and collaborative approach to

manufacturing, where humans and machines work together in cooperation.
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Motivation: Collaborative Industrial Environment

• Develop a framework for collaborative task offloading using different

attributes of participating robots.
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System Model



System Model: Overview

Environment

• fenceless rectangular smart factory floor,

• workstations spread across the floor in a grided manner.

• set of mobile robots M,

• set of stationed robots S , and

• set of edge nodes E .

The problem

There are limited on-device computational capabilities, the generated tasks

are offloaded across the resource-sharing network.
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Environment

• fenceless rectangular smart factory floor,

• workstations spread across the floor in a grided manner.

• set of mobile robots M,

• set of stationed robots S , and

• set of edge nodes E .

Robot generates a task represented as a tuple,

(x , y ,w , p, d)

• x : input task size in KBs,

• y : output task size in KBs,

• w : CPU cycles required in Mbits,

• p: task priority (soft, medium, hard), and

• d : task deadline.

The problem

There are limited on-device computational capabilities, the generated tasks

are offloaded across the resource-sharing network.
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System Model: Goal

Each robot maintains a list of neighbouring resources, ones within i th source

robot’s data-transmission range,

X−i ⊆ {M,S ,E} − i
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System Model: Goal

Each robot maintains a list of neighbouring resources, ones within i th source

robot’s data-transmission range,

X−i ⊆ {M,S ,E} − i

Our goal

Minimize total service delay, the sum of communication and computation

costs.

Assumptions

• Data rate remains stable and constant once direct connection is

established.

• Use a linear cost function for total service delay.
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System Model: Constraints

Three cases for communication cost for task offloading:

1. source robot to neighbouring mobile robots,

2. source robot to neighbouring stationed robots, and

3. source robot to the neighbouring edge node.
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System Model: Constraints

Three cases for communication cost for task offloading:

1. source robot to neighbouring mobile robots,

2. source robot to neighbouring stationed robots, and

3. source robot to the neighbouring edge node.

Constraints I: Communication

• Total channel capacity is predicted by the Shannon–Hartley theorem.

• The channel capacity determines communication delay,

• D↑: uplink delay, and

• D↓: downlink delay.
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System Model: Constraints

Constraints I: Communication

Constraints II: Computation

• f : available computational capacity of resource,

• Dw : residence time in task queue before resource provisioning, and

• Dc : computation delay is time taken to compute task on provisioned

computational resource.
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Algorithm Design



Algorithm: Device selection

Multi-arm bandit (MAB) approach

• To select the nearby under-utilized devices for task offloading.

• Typically, MAB techniques make decisions:

1. over time under uncertainty, and

2. exhibit simplicity.
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Algorithm: Device selection

Multi-arm bandit (MAB) approach

• To select the nearby under-utilized devices for task offloading.

• Typically, MAB techniques make decisions:

1. over time under uncertainty, and

2. exhibit simplicity.

• Assuming,

• K possible actions or arms, and

• T total rounds.

• At every round, an arm is chosen and reward is collected.

Bandit feedback

At every round, there is auxiliary feedback associated with every action,

• gain knowledge of the service delay of the chosen arm, and

• builds a context of the neighbouring environment.
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Algorithm: Device selection

Multi-arm bandit (MAB) approach

• To select the nearby under-utilized devices for task offloading.

• Typically, MAB techniques make decisions:

1. over time under uncertainty, and

2. exhibit simplicity.

• Assuming,

• K possible actions or arms, and

• T total rounds.

• At every round, an arm is chosen and reward is collected.

The challenge

• Need to balance exploration-exploitation trade-off, not spending too

much effort on exploring information.
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Algorithm: Adaptive online learning

The solution

To learn a balance between exploration and exploitation using online

reinforcement learning.

Consider a task is generated at robot i at time t,

1. At every iteration, ait is available action-set, local or offload.

• list i th robot’s neighbouring resources, X−i .

• adjust action ait based on earlier action ait−1.

2. After T iterations accumulated expected reward should be highest,

corresponding to improved throughput of the collaborative

resource-sharing network.
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Algorithm: Adaptive online learning

Considering an action a is available at time instant t, i.e. at = a,

1. Estimate quality of this action is,

µ(a) = E[ρt |(at = a)]

2. Select a suitable action at ,

3. Compute cumulative reward for it at step t,

Q(at) = Qat−1 +
1

t
(ρt − Qat−1)
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Algorithm: Adaptive online learning

Considering an action a is available at time instant t, i.e. at = a,

1. Estimate quality of this action is,

µ(a) = E[ρt |(at = a)]

2. Select a suitable action at ,

• pure-greedy. selects an action at within the available action set as,

max
a

(µ(a)).

• ϵ-greedy. explores other options with ϵ probability.

• ϵ-decay. explores other options with ϵ probability but this exploration

diminishes with passing iterations.

3. Compute cumulative reward for it at step t,

Q(at) = Qat−1 +
1

t
(ρt − Qat−1)

9



Algorithm: Adaptive online learning

Considering an action a is available at time instant t, i.e. at = a,

1. Estimate quality of this action is,

µ(a) = E[ρt |(at = a)]

2. Select a suitable action at ,

3. Compute cumulative reward for it at step t,

Q(at) = Qat−1 +
1

t
(ρt − Qat−1)

9



Algorithm: Adaptive online learning

Considering an action a is available at time instant t, i.e. at = a,

1. Estimate quality of this action is,

µ(a) = E[ρt |(at = a)]

2. Select a suitable action at ,

3. Compute cumulative reward for it at step t,

Q(at) = Qat−1 +
1

t
(ρt − Qat−1)

The optimization goal

P1 : max
a1,··· ,aT

1

T

T∑
t=1

Q(at)
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Algorithm: Framework
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Results



Results: Simulation setup

Description Value

Simulator AnyLogic PLE v8.5

Simulation area 3 sq.km

Road Network Industrial

Total simulation time 1 hr

Simulation repetitions 5 (five) times

Device arrival rate 100–500s

Communication range 100m

System 1.7 GHz Intel Core i5

RAM 4 GB

OS macOS Mojave

11



Results: Performance metrics

Performance metrics

1. End-to-end delay. is sum of communication, queuing at the device and

computation delay.

2. Delivery rate. is ratio of completed jobs delivered to total jobs offloaded

from source node.

3. Transmission delay. is delay caused due to the data rate.

Other comparison methods:

1. Nearest selects device at minimum euclidean distance between devices

from source.

2. Random selects an action randomly.
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Results: Performance
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Results: Performance
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Conclusions



Conclusions

• Provision of a framework for collaborative task offloading for smart

industry.

• Support an online reward-oriented mechanism considering resource

capacity constraints and service delay.

• Simulate a resource-sharing network among collaborating robots.

• Systematic evaluation of task completion times to assess framework

efficiency.

• Demonstrate improved task delivery rates.
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