

Task Offloading using Multi-armed bandit Optimization in Autonomous Mobile Robots

Anis Ur Rahman¹, Asad Waqar Malik², Hasan Ali Khattak², Moayad Aloqaily³

¹ University of Jyväskylä, Finland

² National University of Sciences and Technology, Pakistan

³ Mohamed bin Zayed University of Artificial Intelligence, United Arab Emirates email:anis.u.rahman@jyu.fi

Table of contents

- 1. Introduction and motivation
- 2. System Model
- 3. Algorithm Design
- 4. Results
- 5. Conclusions

Introduction and motivation

Motivation: Industry 5.0

Industry 5.0 is a **human-centered** and **collaborative** approach to manufacturing, where humans and machines work together in cooperation.

Motivation: Collaborative Industrial Environment

• **Develop** a framework for **collaborative task offloading** using different attributes of participating robots.

System Model

System Model: Overview

Environment

- fenceless rectangular smart factory floor,
- workstations spread across the floor in a grided manner.
 - set of **mobile** robots *M*,
 - set of stationed robots S, and
 - set of edge nodes E.

System Model: Overview

Environment

- fenceless rectangular smart factory floor,
- workstations spread across the floor in a grided manner.
 - set of **mobile** robots *M*,
 - set of stationed robots S, and
 - set of edge nodes E.

Robot generates a **task** represented as a **tuple**,

(x, y, w, p, d)

- x: input task size in KBs,
- y: output task size in KBs,
- w: CPU cycles required in Mbits,
- p: task priority (soft, medium, hard), and
- d: task deadline.

System Model: Overview

Environment

- fenceless rectangular smart factory floor,
- workstations spread across the floor in a grided manner.
 - set of **mobile** robots *M*,
 - set of **stationed** robots *S*, and
 - set of edge nodes E.

The problem

There are **limited on-device computational capabilities**, the generated tasks are **offloaded** across the **resource-sharing network**.

System Model: Goal

Each robot maintains a list of **neighbouring resources**, ones within i^{th} source robot's **data-transmission range**,

 $X_{-i} \subseteq \{M, S, E\} - i$

System Model: Goal

Each robot maintains a list of **neighbouring resources**, ones within i^{th} source robot's **data-transmission range**,

 $X_{-i} \subseteq \{M, S, E\} - i$

Our goal

Minimize total service delay, the sum of communication and computation costs.

Assumptions

- Data rate remains **stable** and **constant** once direct connection is established.
- Use a linear cost function for total service delay.

System Model: Constraints

Three cases for communication cost for task offloading:

- 1. source robot to neighbouring mobile robots,
- 2. source robot to neighbouring stationed robots, and
- 3. source robot to the neighbouring **edge** node.

System Model: Constraints

Three cases for communication cost for task offloading:

- 1. source robot to neighbouring mobile robots,
- 2. source robot to neighbouring stationed robots, and
- 3. source robot to the neighbouring **edge** node.

Constraints I: Communication

- Total channel capacity is predicted by the Shannon-Hartley theorem.
- The channel capacity determines communication delay,
 - D^{\uparrow} : **uplink** delay, and
 - D[↓]: downlink delay.

System Model: Constraints

Constraints I: Communication

Constraints II: Computation

- f: available computational capacity of resource,
- D_w : residence time in task queue before resource provisioning, and
- *D_c*: **computation delay** is time taken to compute task on provisioned computational resource.

Algorithm Design

Multi-arm bandit (MAB) approach

- To select the nearby under-utilized devices for task offloading.
- Typically, MAB techniques make decisions:
 - 1. over time under uncertainty, and
 - 2. exhibit simplicity.

Multi-arm bandit (MAB) approach

- To select the nearby under-utilized devices for task offloading.
- Typically, MAB techniques make decisions:
 - 1. over time under uncertainty, and
 - 2. exhibit simplicity.
- Assuming,
 - K possible actions or arms, and
 - T total rounds.
- At every round, an arm is chosen and reward is collected.

Multi-arm bandit (MAB) approach

- To select the nearby under-utilized devices for task offloading.
- Typically, MAB techniques make decisions:
 - 1. over time under uncertainty, and
 - 2. exhibit simplicity.
- Assuming,
 - K possible actions or arms, and
 - T total rounds.
- At every round, an arm is chosen and reward is collected.

Bandit feedback

At every round, there is auxiliary feedback associated with every action,

- gain knowledge of the service delay of the chosen arm, and
- **builds** a context of the neighbouring environment.

Multi-arm bandit (MAB) approach

- To select the nearby under-utilized devices for task offloading.
- Typically, MAB techniques make decisions:
 - 1. over time under uncertainty, and
 - 2. exhibit simplicity.
- Assuming,
 - K possible actions or arms, and
 - T total rounds.
- At every round, an arm is chosen and reward is collected.

The challenge

• Need to **balance exploration-exploitation trade-off**, not spending too much effort on exploring information.

The solution

To learn a **balance** between **exploration** and **exploitation** using **online reinforcement learning**.

Consider a task is generated at robot i at time t,

- 1. At every iteration, a_t^i is available **action-set**, **local** or **offload**.
 - **list** i^{th} robot's **neighbouring resources**, X_{-i} .
 - **adjust** action a_t^i based on **earlier action** a_{t-1}^i .
- 2. After *T* iterations **accumulated expected reward** should be highest, corresponding to **improved throughput** of the collaborative resource-sharing network.

Considering an action *a* is available at time instant *t*, i.e. $a_t = a_t$,

1. Estimate quality of this action is,

$$\mu(a) = \mathbb{E}[\rho_t | (a_t = a)]$$

Considering an **action** *a* is available at **time instant** *t*, i.e. $a_t = a_t$,

1. Estimate quality of this action is,

$$\mu(a) = \mathbb{E}[\rho_t | (a_t = a)]$$

- 2. Select a suitable action *a*_t,
 - **pure-greedy.** selects an action a_t within the available action set as, $\max_{a}(\mu(a))$.
 - ϵ -greedy. explores other options with ϵ probability.
 - ε-decay. explores other options with ε probability but this exploration diminishes with passing iterations.

Considering an action *a* is available at time instant *t*, i.e. $a_t = a$,

1. Estimate quality of this action is,

$$\mu(a) = \mathbb{E}[\rho_t | (a_t = a)]$$

- 2. **Select** a suitable **action** *a*_t,
- 3. Compute cumulative reward for it at step t,

$$Q(a_t) = Q_{a_{t-1}} + \frac{1}{t}(\rho_t - Q_{a_{t-1}})$$

Considering an action *a* is available at time instant *t*, i.e. $a_t = a_t$,

1. Estimate quality of this action is,

$$\mu(a) = \mathbb{E}[\rho_t | (a_t = a)]$$

- 2. **Select** a suitable **action** a_t ,
- 3. Compute cumulative reward for it at step t,

$$Q(a_t) = Q_{a_{t-1}} + \frac{1}{t}(\rho_t - Q_{a_{t-1}})$$

The optimization goal

$$P1: \max_{a_1,\cdots,a_T} \frac{1}{T} \sum_{t=1}^T Q(a_t)$$

Algorithm: Framework

Results

Results: Simulation setup

Description	Value
Simulator	AnyLogic PLE v8.5
Simulation area	3 sq.km
Road Network	Industrial
Total simulation time	1 hr
Simulation repetitions	5 (five) times
Device arrival rate	100–500s
Communication range	100m
System	1.7 GHz Intel Core i5
RAM	4 GB
OS	macOS Mojave

Results: Performance metrics

Performance metrics

- 1. End-to-end delay. is sum of communication, queuing at the device and computation delay.
- 2. **Delivery rate.** is **ratio** of completed jobs **delivered** to total jobs **offloaded** from source node.
- 3. Transmission delay. is delay caused due to the data rate.

Other comparison methods:

- 1. **Nearest** selects device at minimum euclidean distance between devices from source.
- 2. Random selects an action randomly.

Results: Performance

Results: Performance

Results: Performance

Conclusions

Conclusions

- Provision of a framework for **collaborative task offloading** for **smart industry.**
- Support an **online reward-oriented** mechanism considering **resource capacity constraints** and **service delay.**
- Simulate a resource-sharing network among collaborating robots.
- Systematic evaluation of **task completion times** to assess framework **efficiency**.
- Demonstrate improved task delivery rates.