Ph.D Annual Progress Report

Visual Saliency model on Multi-GPU

Anis ur RAHMAN
Supervised by: Dominique HOUZET & Denis PELLERIN

GIPSA-lab, 961 rue de la Houille Blanche
38402 St Martin d’Heres, France

June 28, 2010

Abstract

The human vision has been studied deeply in the past years, and several different models have been proposed to
simulate it on computer. Some of these models concerns visual saliency which is potentially very interesting in a lot
of applications like robotics, image analysis, compression, video indexing. Unfortunately they are compute intensive
with tight real-time requirements. Among all the existing models, we have chosen a spatio-temporal one combining
static and dynamic information. We present in this report a very efficient implementation of this model with multi-
GPU reaching real-time. We present the algorithms of the model as well as several parallel optimizations on GPU
with higher precision and execution time results. The real-time execution of this multi-path model on multi-GPU
makes it a powerful tool to facilitate many vision related applications.

1 Introduction

Visual attention models translate the capability of human vision to concentrate only on smaller regions of the visual
scene. More precisely, such regions are the spotlight of focus, which either may be an object or a portion of the
scene. A number of modalities are used to locate regions of attention like intensity, color, orientation, motion, and
many others. The attention model acts as an information processing bottleneck to reduce the overall information into
a region of useful information. This model when guided by salient stimuli falls into a category of bottom-up approach,
which is fast and primitive. On the other hand, models driven by cognition using variable selection criteria are the
basis for top-down approaches, and are slower and more complex. The human visual system uses either saliency-based
or top-down approach, or the combination of both these approaches to find the spotlight of focus.

2 Goals of the thesis

* to improve the existing visual attention model by adding different paths i.e. face recognition, sound, color,
characters etc

* to optimize the parallel algorithms using specific data structures to split the computation among multi-GPUs

* to virtualize memory management for 2D/3D data processing, and implement a tuneable library of data struc-
tures and access will be built, adapted to image processing applications

* to validate the model on a real application (bio-inspired robot, video indexing)

* to improve the model, and compare the performance gains

The scientific aim of this study is the proposition of variants for algorithms dedicated to visual attention, allowing
better results quality as well as higher execution performances.

3 Spatio-temporal model

The bottom-up visual saliency model [4] implemented on GPU mimics the human vision system all the way from the
retina to the visual cortex. The model uses a saliency map to determine where the source of attention lies within the
input scene, which may further be used to initiate other tasks. Also, it is linearly modeled and based on the human
visual system. The forking of the entire pathway into different sub-paths using various modalities is more efficient
to compute. In the end, the output of both pathways is combined into a final saliency map using several adaptive
coefficients like mean, maximum, and skewness. The model is validated against large datasets of images, and the
results are compared against that of a human visual system using an eye tracker. The model is efficient, and results in
a stable prediction of eye movements.

This model to predict the areas of concentration finds its worth in applications like for video content analysis to
perform structural decomposition to build indexes, for video reframing to deliver comforting viewing experience on
mobile devices, for video compression to reduce the bandwidth required to transmit, for realistic video synthesis. The
notion of sketching a biologically-inspired model is to build robust and all-purpose vision systems adaptable to various
environmental conditions, users, and tasks.

3.1 Merit to qualify for parallelization

Often visual saliency models incorporate a number of complex tasks that make a real-time solution quite difficult to
achieve. This objective is only achievable by simplification of the overall model as done by Itti [3] and Nabil [5].
Resultantly, making impossible the inclusion of other processes into the existing model. Over the years, GPUs have
evolved from fixed function architecture into completely programmable shader architecture. All together with a mature
programming model like CUDA [1] makes the GPU platform a preferable choice for acquiring high performance gains.
Generally, vision algorithms are a sequence of filters that are relatively easier to implement on GPU’s massively data-
parallel architecture. Also, the graphics device is cheaper, accessible to everyone, and simple to program than its
counterparts.

3.2 Which, and why

The static pathway includes the retina filter with low-pass filters using 2D convolutions, the normalizations with
reduction operations, shifts operations, and Fourier transforms. On the other hand, the dynamic pathway involves
recursive Gaussian filters, projection, modulation/demodulation, and kernels for calculation of spatial and temporal
gradients are simple and classically implemented. Notably, the kernels that are compute-intensive and interesting to be

Review
references

v

Port to
C + CUDA

N

Make
optimizations

T

Evaluate using
benchmarks

Is there
a gain?

Figure 1: Proces flow for porting onto GPU

implemented on the GPU are: interactions kernel and gabor filter bank from the first pass, while the motion estimator
kernel from the second pass. Hence, we present these kernels because they can be potentially improved by employing
various optimizations, and making several adjustments to the kernel launch configurations.

3.3 Importance of optimizations

Naturally, due to immense computational power of the graphics device, the memory management becomes more
critical. There are several strategies to achieve the desired performance like memory coalescing to execute burst
memory accesses, and to use the cache memories, internal shared memories and registers. Most importantly, shared
memory is an on-chip high bandwidth memory shared among all the threads on a single SM. It has several uses: as a
register extension, to avoid global memory accesses, to give fast communication among threads, and as a data cache.

3.4 General guidelines
In short, the porting process of saliency model can be summarized into a number of key points:

* Identify parts in the source code for data initialization, compute intensive task and data retrieval.

 Aligning a structure type containing 16 bytes of data to 16-byte boundary provide coalesced memory transaction
for the global memory thus increasing global memory bandwidth efficiency.

» Page-locked memory buffer can be requested for higher data transfer rate however multiple requests over small
amount of data degrade the overall performance significantly.

» Examine computation demanding task for data dependencies as well as sequence. This is important to recognize
whether the computation can be done in parallel. Usually an arrays or matrices operation that is done in a loop
without any dependencies can be directly ported.

* Although the global memory has the highest latency among the other types of memory in the device, the latency
can be hidden by compute intensive instructions.

* Memory management is crucial in getting most of the performance from CUDA. By using shared memory as a
temporary memory for operations could increase the performance.

* The amount of size for memory transfer must be kept at minimum as possible for efficiency. Generally, a big
ratio between computations to memory transfer must be maintained.

* For multi-dimensional array computation, it is more convenient to flatten the array for memory allocation and
memory transfer but the data will still be able to be computed in multi-dimensional computational model by
managing the kernels blocks and threads.

3.5 Multi-GPU implementation

Multi-GPU implementation is quite interesting to increase the computational efficiency of the entire visual saliency
model. We have employed a shared-system GPU model, where multiple GPUs are installed on a single CPU. If the
devices need to communicate, they do it through the CPU with no inter-GPU communication. A CPU thread is created
to invoke kernel execution on a GPU, accordingly, we will have a CPU thread for each GPU. To successfully execute
our single GPU solution on multi-GPUs, the parallel version must be deterministic. Our first implementation, the two
pathways of the visual saliency model; static and dynamic, are completely separate with no inter-GPU communication
required. The resulting saliency maps are simply copied-back to the host, where they can be fused together into the
final saliency map.

* valuating aspects and affects of using dynamic modalities in the saliency model
* integration of the dynamic pathway into the existing platform

* implementing the model on a shared-system multi-gpu system, to prepare the platform to be used on cluster of
GPUs

4 Obtained results

All implementations are tested on a 2.80GHz quad core system with 12GB of main memory, and Windows 7 running
on it. On the other hand, the parallel version is implemented using latest CUDA v3.0 programming environment on
NVIDIA GTX28S5 series graphics cards. This graphics device consists of 24 SMs with 240 scalar cores in total, I6KB
shared memory, and 8192 registers per SM.

4.1 Speedup for static pathway

The implementation of the static pathway on GPU resulted in performance gains, which is illustrated in 2 for various
image sizes. The original code for the pathway is in MATLAB, which is redone using C for the sequential and
multithreaded solutions resulted in performance gains of 2x and 3.5x respectively. On the other hand, the CUDA
implementation resulted in speedup of more than 400x to the MATLAB solution.

4.2 Speedup for Dynamic pathway

The CUDA solution resulted in an immense speedup against its sequential MATLAB and C counterparts as illustrated
in table 1. The speedup are for three input image datasets “Treetran”, "Treediv”’ and ”Yosemite”, where the first two
are of resolutions 150x 150 pixels, while the last one is of 316x252 pixels.

10

——CuUDA
C

time (ms)
-

—+—C+OpenMP

—+—MATLAB

01 | 4./.—”.’4.——_.

128 256 384 512 640 768 896 1024

image size (N?)

Figure 2: Timings of different versions of static pathway

Table 1: Timings for the dynamic pathway after Optimizations

treetran treediv yosemite

MATLAB 13.30s 12.86s 46.61s
C 1.75s 1.76s 6.28s
CUDA 0.12s 0.12s 0.30s

4.3 Precision

The original code is developed using double precision in MATLAB, hence it is important to verify the effects of lower
precision support on graphics devices. It mainly depends on the algorithm implemented, whether it can produce usable
results or not. We have checked the accuracy of our results to be 99.66% using universal image quality index [6]. Also,
we found that with each progressing stage the useful information increases that lead to more overall accuracy of the
pathway.

4.4 Real-time streaming solution

After the parallel implementation of the visual saliency algorithm, we used OpenCV to demonstrate the real-time
processing. The demonstration is done on a quad core machine with three GPUs installed, and the library is used to
interface with the webcam. This resulted in execution of the static pathway at 28 fps on the platform shown in the
figure 3. Finally, the performance gains on GPU will enable our model to be used for various applications such as
automatic video reframing process [2]. This application extracts a cropping window using the regions of interest from
the model. These windows are then smooth to increase the viewing experience.

4.5 Activity report

Drawing on these results, several publications have been written, as well as other activities during the year are listed
below:

Figure 3: Platform for real-time solution

International Journal:

e Rahman, A.; Houzet, D.; Pellerin, D.; Guyader, N. & Marat, S. Parallel Implementation of a Spatio-temporal
Visual Saliency Model. Journal of Real-Time Image Processing, JRTIP. Elsevier (2010) {Accepted }

Conference:

* Houzet, D.; Huet, S. & Rahman, A. SysCellC: a data-flow programming model on multi-GPU. International
Conference on Computational Science, ICCS *10 (2010) {Accepted }

e Rahman, A.; Houzet, D. & Pellerin, D. GPU implementation of motion estimation for visual saliency. Confer-
ence on Design and Architectures for Signal and Image Processing, DASIP (2010) {Submitted}

Book chapter:

e Rahman, A.; Houzet, D. & Pellerin, D. Visual Saliency model on Multi-GPU. mei Hwu, W. (ed.) GPU Com-
puting Gems. Elsevier (2010) {Accepted abstract}

Presentations:

e Rahman, A. Parallel implementation of visual saliency model on GPU. Presentation during CUDA programming
course, Nov, GIPSA-lab (2009)

* Rahman, A. Bio-inspired visual attention model on GPU. Invited speaker for the meeting L’utilisation des GPU
pour les applications de traitement du signal et des images, GDR-ISIS, 06th May, Telecom Paristech (2010)

Poster:

e Rahman, A.; Houzet, D.; Pellerin, D.; Guyader, N. & Marat, S. Parallel Implementation of a Visual Saliency
Model, NVIDIA Research Summit, GTC ’09, Oct, San Jose, USA (2009)

e Rahman, A.; Houzet, D.; Pellerin, D.; Guyader, N. & Marat, S. Visual saliency on multi-GPU. CNRS - EEFTIG
10 Ecole d’été francophone de traitement d’image sur GPU, 29 June - 02 July, Grenoble (2010)

Courses taken:

¢ Introduction du reparti calcul: The aim of this course is to provide an introduction to supercomputing, paral-
lelism and their concepts and tools. It is based on numerous practical examples illustrated in the context of TP.
(36h)

* Recherche operationelle: The course give insight of graph theory, shortest paths algorithms, scheduling, max-
imum flow problems, and linear Programming. (16h)

« Sensibilisation a la propriété industrielle: Intellectual property and industrial property in particular are essen-
tial tools for the legal protection of innovations from the company and research laboratories. (10h)

¢ Gestion de projets: The aim of this course is to understand the organization of an industrial project or research
in order to position themselves effectively. After an overview, we descend into the level of detail to offer
behaviors of individual agents that promote the collective productivity. The study will be of practical scenarios
with use of software to promote productivity. (20h)

« Initiation a I’éthique: The course is an introduction to ethics, its importance in our daily life, its relation to
religion, philosophy and science. In the end, several scenario from the area of research are presented to create
an ethical sense in a researcher. (12h)

¢ Industrial marketing: To present main strategies of the companies on the markets, and the knowledges and the
know hows to allow the researchers to place their work in the middle of innovation processes. (18h)

Courses assisted:

* Ordinateurs et microprocesseurs (24h TD)

* CNRS - EEFTIG ’10 Ecole d’été francophone de traitement d’image sur GPU, 29 June - 02 July, Grenoble
(2010) (8h TP)

5 Emerging point of view

Beyond their appeal as cost-effective HPC accelerators, GPUs also have the potential to significantly reduce space,
power, and cooling demands, and reduce the number of operating system images that must be managed relative to
traditional CPU-only clusters of similar aggregate computational capability. In support of this trend, NVIDIA has
begun producing commercially available Tesla GPU accelerators tailored for use in HPC clusters.

Although successful use of GPUs as accelerators in large HPC clusters can confer the advantages outlined above, they
present a number of new challenges:

* Resource sharing
* Heath monitoring and data security
* Node allocation

* code development tools

6 Future work plan

6.1 Porting to GPU cluster

To build a cluster of CPU-GPU nodes with the following characteristics:

* GPU computation enabled with supplementary CPU-GPU communication overlapping capabilities
* fast interconnection network in between nodes

* enough power supply on each node to support several devices.

After setting up the cluster with the characteristics desired, we can evaluate various parameters and tools for
potential of GPU for high performance computing in the context of image processing.

* Power consumption: To evaluate the GPU power consumption correlated with different kernel workloads, we
can evaluate measures for power consumption for a memory-access intensive kernel, and another for a compute-
intensive kernel.

* Host-device bandwidth and latency: The measurements of sending data between the host and device memories
i.e when the data is sent from the memory attached to the same CPU.

* Benchmark: To study the peak CPU-GPU single node performance against peak node performance on multiple
nodes. It will be interesting to use different precision, and also test other benchmarks.

* Development tools: To evaluate different GPU programming languages and toolkits. It is evident that many of
the HPC applications have been implemented using MPI for parallelizing the application. The simplest way to
start building an MPI application that uses GPU-accelerated kernels using NVIDIAs nvcc compiler.

6.2 Developing a multicore solution

To prepare a multicore solution for comparison purpose against using GPUs. With the continuing increase in the
number of cores with each CPU generation, there will be a significant need for efficient mechanisms for sharing GPUs
among multiple cores, particularly for legacy MPI applications that do not use a hybrid of shared-memory and message
passing techniques within a node. Resultantly, This implementation will provide us a testbed to evaluate:

* usage of OpenMP to take advantage of the multicore CPUs

* usage of different MPI implementation which support different interconnection networks (OpenMPI)

6.3 Inclusion of pathway

The main advantage of the performance gain accomplished will allow the inclusion of face recognition, stereo, audio,
and other complex processes. The three pathway model with face recognition is already evaluated to get more accurate
salient regions. Whereas, a colleague is also investigating and modeling sound as a stimuli for attention.

6.4 Creation of a library or tool

It is our main objective to prepare an application or tool to investigate the correctness of the model for decision making.
This will be possible due to the faster platform for investigating different videos, and also it will be used by other
collaborators (e.g DPC Dept., GIPSA-lab) interested to evaluate our model. Finally, the performance gains on GPU
will enable our model to be used for various applications such as automatic video reframing process. This application
will extract a cropping window using the regions of interest from the model. These windows can be smoothened to
increase the viewing experience.

7 Conclusion

In the report, we presented the multi-GPU implementation of a visual saliency model to identify the areas of attention.
The main advantage of the performance gain accomplished will allow the inclusion of face recognition, stereo, audio,
and other complex processes. Consequently, this real-time solution finds a wide application for several research
and industrial problems i.e. video compression, video reframing, frame quality assessment, visual telepresence and
surveillance, automatic target detection, robotics control, super-resolution, computer graphics rendering, and many
more.

References

[1] NVIDIA CUDA Compute Unified Device Architecture - Programming Guide, 2007.
[2] C. Chamaret and O. Le Meur. Attention-based video reframing: Validation using eye-tracking. In ICPR0OS. 2008.

[3] L. Itti. Real-time high-performance attention focusing in outdoors color video streams. In B. Rogowitz and T. N.
Pappas, eds., Proc. SPIE Human Vision and Electronic Imaging VII (HVEI'02), San Jose, CA, pp. 235-243. SPIE
Press, 2002.

[4] S.Marat, T. Ho Phuoc, et al. Modelling spatio-temporal saliency to predict gaze direction for short videos. Int. J.
Comput. Vision, 82:231-243, 2009.

[5] N. Ouerhani and H. Hgli. Real-time visual attention on a massively parallel simd architecture. Real-Time Imaging,
9:189-196, 2003.

[6] Z. Wang and A. C. Bovik. A universal image quality index. Signal Processing Letters, IEEE, 9:81-84, 2002.

	Introduction
	Introduction
	Goals of the thesis
	Spatio-temporal model
	Merit to qualify for parallelization
	Which, and why
	Importance of optimizations
	General guidelines
	Multi-GPU implementation

	Obtained results
	Speedup for static pathway
	Speedup for Dynamic pathway
	Precision
	Real-time streaming solution
	Activity report

	Emerging point of view
	Future work plan
	Porting to GPU cluster
	Developing a multicore solution
	Inclusion of pathway
	Creation of a library or tool

	Conclusion

