Face perception: Influence of location and number in videos

Anis Rahman Denis Pellerin Dominique Houzet

GIPSA-lab, UMR 5216, Grenoble, France

May 25, 2012

	Method 00000	Results	Conclusion
Outline			

Introduction	Method	Conclusion

Introduction

Faces are special

- Specialized face-selective regions
 - Faces are coded in a specific cortical area of the brain; fusiform face area (FFA).
 - Face processing is fast with neuronal responses as low as 70ms.
- Inherent preference for faces linked to exposure
 - Specific pattern with distinct regions
 - Social and biological importance

Motivation

- To study the influence of faces during free viewing of videos
- To study the impact of location and number of faces for videos
 - To help improve visual saliency model

	Method	Results	Conclusion
Experiment	00000	000000	
Eye position	experiment		

Designed to record eye movements for video stimuli that are then used to investigate the participants behavior.

- 53 videos from different sources i.e. movies, tv shows and news, animated movies, commercials, sports, music concerts etc.
- Each video is decomposed into extracts of 1-3s, resulting in 305 snippets¹
- $\bullet\,$ Total of 14000 frames of gray level stimuli (720 $\times\,$ 576 pixels per frame)
- 15 participants volunteered for the experiment

¹R Carmi and L Itti. "Visual causes versus correlates of attentional selection in dynamic scenes". In: *Vision Res* 46.26 (2006), pp. 4333–4345. ISSN: 0042-6989.

	Method o●ooo	Results 000000	Conclusion
Experiment			
Video stimuli			

- The snippets are strung together into 20 clips of 30s
- $\bullet\,$ Eye-link II tracker is used to record eye movements of participants with FOV 40° $\times\,30^\circ$

Video stimuli for the experiment

	Method	Conclusion
	00000	
Experiment		

	Method	Conclusion
	00000	
Experiment		
Definition o	flocations	

- We define three locations around the center,
 - Inside (I) upto 2°
 - Periphery (P) 2° to 14°
 - Outside (O) 14° and above

	Method	Conclusion
	00000	
Experiment		
Labeled fac	e data	

- Faces are hand-labeled for all video clips
- Total ${\sim}18000~{\rm faces}$
- Discarded large faces i.e. greater than $(R_{periphery} R_{inside})$

	One face		Т٧	vo fa	ices	
	Ρ	0		PP	PO	00
# of samples	2089	852		450	430	395

No. of samples or frames for different categories of number and location

Different categories of face frames based on location and number

	Method 00000	Results	Conclusion
Results			

Evaluation criterion

• NSS: Normalized Saliency Scanpath²

$$NSS_{(i,j)} = rac{M_f \cdot M_h - ar{x}_f}{s_f}$$

- M_f : face map with 2D gaussians on labeled faces
- M_h : human eye position density map
- \bar{x}_f : empirical mean of saliency map M_m
- s_f : empirical standard deviation of saliency map M_m

 $^2 R$ J Peters et al. "Components of bottom-up gaze allocation in natural images". In: Vision Res 45 (2005), pp. 2397–2416.

Faces in peripheral vision 9/ 18

	Method 00000	Results	Conclusion
Results			
One face			

NSS evolution

		Periphery	Outside
NSS	x	3.72	1.96
	$SE_{\bar{x}}$	0.160	0.187

Scores for one face; mean values for 'first fixation' (frames 8 to 16)

Faces in peripheral vision 10/18

	Method 00000	Results 00●000	Conclusion
Results			
Two faces			

NSS evol	ution
----------	-------

		PP	00	PO
NSS	\bar{x}	2.94	2.10	1.56
	$SE_{\bar{x}}$	0.268	0.306	0.145

Scores for two faces; mean values for 'first fixation' (frames 8 to 16)

Faces in peripheral vision 11/18

	Method 00000	Results	Conclusion
Results			
Two faces:	Mixed locations (PO))	

NSS \bar{x} **1.47** 0.06 $SE_{\bar{x}}$ 0.095 0.063

0

Scores for PO case for 'first fixation' (frames 8 to 16)

Faces in peripheral vision 12/18

	Method	Results	Conclusion
		000000	
Results			

Two faces: Outside location (OO)

The pair of faces in outside location are divided into near and far faces based on their distance from center.

$$d_f = \sqrt{(c_x - f_x)^2 + (c_y - f_y)^2}$$

		NEAR	FAR
NSS	x	1.91	1.01
	$SE_{\bar{x}}$	0.232	0.231

Scores for NEAR and FAR faces in outside location for 'first fixation' (frames 8 to 16)

	Method	Results	Conclusion
		000000	
Results			
Results sum	marized		

One face			Two fa	aces			
	Р	0	PP	Р	0	00)
NSS	3.72	1.96	2.94	1.	56	2.1	0
				Ρ	0	NEAR	FAR
				1.47	0.06	1.91	1.01

Summary of NSS scores for different cases of face number and location for 'first fixation' (frames 8 to 16)

Results

Conclusion

Conclusion and Perspectives

Conclusion

- Impact of face decreases with increasing eccentricity
- Impact of face decreases with increasing number of faces
- Crucial to understand the influence of complex objects on eye movements for videos

Perspectives

- Incorporate into visual saliency model
- Evaluate against other databases

Method 00000	Results	Conclusion

Thank you for your attention!

Visual saliency model

- Type of visual attention model³
- To find the spotlight of focus
- Based on human visual system
- Bottom-up model
- Implements three pathways

³S. Marat et al. "Improving visual saliency by adding 'face feature map' and 'center bias'". In: *Cognitive Computation* (2012). DOI: 10.1007/s12559-012-9146-3.

In	+ ***	24		μ.	

Method

Results

Conclusion

NSS Scores

Surface map with NSS scores for all faces

Faces in peripheral vision 18/18