

Unlocking GPU Potential: HMSC and LUMI-G for Ecology

Anis Ur Rahman¹, Gleb Tikhonov², Otso Ovaskainen¹, Jari Oksanen²

¹ University of Jyväskylä, Finland ² University of Helsinki, Finland email:anis.u.rahman@jyu.fi

Table of contents

- 1. Introduction and motivation
- 2. The task
- 3. Results
- 4. Conclusions

Introduction and motivation

The context

The HORIZON-INFRA-2021-TECH-01 project "Biodiversity Digital Twin for Advanced Modelling, Simulation and Prediction Capabilities."

European research project:

 focused on development of pipelines for processing of massive biodiversity data with LUMI, Europe's fastest petascale supercomputer.

Contributions:

- 1. to better observe spatio-temporal changes in biodiversity,
- 2. to push limits of predictive biodiversity modelling, and
- 3. to **provide** infrastructure to drive long-term biodiversity research.

The context

The HORIZON-INFRA-2021-TECH-01 project "Biodiversity Digital Twin for Advanced Modelling, Simulation and Prediction Capabilities."

European research project:

 focused on development of pipelines for processing of massive biodiversity data with LUMI, Europe's fastest petascale supercomputer.

Contributions:

- 1. to better observe spatio-temporal changes in biodiversity,
- 2. to push limits of predictive biodiversity modelling, and
- 3. to **provide** infrastructure to drive long-term biodiversity research.

LIFEPLAN – A Planetary Inventory of Life:

- establish current state of biodiversity across the globe, and
- generate accurate predictions of its future state under future scenarios.

Approaches to "efficient" predictive modelling

A real need:

- Optimized operations/components for predictive modelling
- More traditional data processing for large-scale biodiversity data
- Digital twins for ecological research

Approaches to "efficient" predictive modelling

A real need:

- Optimized operations/components for predictive modelling
- More traditional data processing for large-scale biodiversity data
- Digital twins for ecological research

Approaches to "efficient" predictive modelling

A real need:

- Optimized operations/components for predictive modelling
- More traditional data processing for large-scale biodiversity data
- Digital twins for ecological research

Research questions

- 1. Can the computational **performance** of species distribution modeling be significantly improved using GPUs?
- 2. How does parallelizing it impact the accuracy and precision?
- 3. What are the potential **challenges** and **bottlenecks** of the parallelization, and how can they be mitigated?

The hardware platform – LUMI

Fastest in Europe and **3rd fastest** globally (Top500 list published in Nov 2022).

- **550 petaflops** theoretical peak performance
- 32 TB memory
- 7 PB flash storage with extreme 2 TB/s bandwidth
- 30 PB object storage for staging area
- 80 PB parallel file system
- Interconnection network:
 - four 200 Gbit/s network interconnect cards

The hardware platform – LUMI

Fastest in Europe and **3rd fastest** globally (Top500 list published in Nov 2022).

LUMI-G: GPU partition

- 2560 nodes, each node includes:
 - one 64 core AMD Trento CPU and four AMD MI250X GPUs
- Concept LUMI-G node:
 - GPU-first system with coherent unified memory, and
 - compute accelerator, not a rendering GPU.

Why is then GPU computing not more widespread?

1. Diminishing returns

- existing CPU-optimized codebase
- expanding existing code makes more sense
- porting code is complicated

2. Lack of expertise

- GPU programming paradigm is different
- New programming languages (CUDA, OpenCL) and frameworks (TensorFlow, PyTorch)
- more effort required to achieve previous performance

3. Lack of tools

- extensive set of tools CPU
- more support for distributed computing

What is TensorFlow

TensorFlow is an end-to-end open source framework for machine learning.

• capable of running on CPUs and/or GPUs

What is TensorFlow

TensorFlow is an end-to-end open source framework for machine learning.

• capable of running on CPUs and/or GPUs

Design principles:

- 1. Dataflow graphs of primitive operators
- 2. **Deferred execution:** Symbolic dataflow graph
- 3. Heterogeneous accelerators

The task

HMSC for community ecology

Hierarchical Modelling of Species Communities (HMSC) is a model-based approach for analyzing community ecological data.

- Basic input data for analyses:
 - a matrix of species occurrences or abundances Y, and
 - a matrix of environmental covariates X.
- Optional input data:
 - species traits T,
 - phylogenetic relationships C, and
 - spatiotemporal context of the sampling design (S and Π).

Ovaskainen et al. (2017), "How to make more out of community data? A conceptual framework and its implementation as models and

software," Ecology Letters.

The environment

The task:

- 1. Implement parameter updaters using Tensorflow,
- 2. Generate posterior samples based on Gibbs sampler, and
- 3. Evaluate a sample models.

The environment

The task:

- 1. Implement parameter updaters using Tensorflow,
- 2. Generate posterior samples based on Gibbs sampler, and
- 3. Evaluate a sample models.

Figures of interest:

- 1. **Performance.** Assess the performance improvement achieved by parallelizing the R-package for species distribution modeling on GPUs using TensorFlow.
- 2. Accuracy. Evaluate the impact of parallelization on the accuracy of species distribution modeling predictions.
- 3. **Scalability.** Assess the scalability of the parallelized R-package on GPUs using TensorFlow.
- Comparative. Conduct a comparative evaluation of the parallelized R-package with other existing species distribution modeling packages or frameworks.

Methodology

We evaluate parallel HMSC implementation for:

	model	sampling units	species	covariates	traits	random levels	pylogeny	spatial method
Ī	M1	48	160	3	3	5	[x]	Null
	M2	1974	284	6	1	2	[×]	Null
	M3	5097	68	5	1	3	[]	Null
	M4	2836	2	8	1	1	[×]	NNGP
	M5	2836	2	8	1	1	[×]	GPP
	M6	2326	81	4	1	2	[]	Full
	M7	2326	81	39	1	2	[]	Full

Experimental runs: on Puhti Al partition

- 80 GPU nodes with total peak performance of 2.7 petaflops.
- Each node has four **Nvidia Volta V100 GPUs** with 32 GB of memory each.

Configurations: nChain = 8; nSamples = 250; thinning = 10; transient = 2500 (total 5000 iterations per chain)

Results

Performance comparison: CPU-GPU (on Puhti)

model	TF-GPU (s)	TF-CPU (s)	R (s)	speedup
M1	7159.1	56542.5	50806.9	7×
M2	1481.6	66367.5	72435.4	49×
M3	483.3	2415.3	8712.1	18×
M4	4828.1	4352.5	27403.4	б×
M5	357.2	6539.6	12562.7	35×
M6	863.0	15409.3	5708.8	7×
M7	2474.3	12078.5	177423.2	72×

Scalability - Varying the number of species

# species	TF-GPU (s)	TF-CPU (s)	R (s)	speedup
4	212.9	237.1	122.4	-
100	236.8	345.5	2698.5	11×
500	257.4	1316.6	14635.2	57×
1000	281.2	2506.5	27208.0	97×

Profiling: Analyzing Profiles in TensorBoard

Performance improvement heuristics are often provided with links to more detailed information.

Profiling: Analyzing Profiles in TensorBoard

Performance improvement heuristics are often provided with links to more detailed information.

Profiling: Tracing in TensorBoard

Trace View Flow events Processes M					View Options				
	0 ms		500 ms .			1,000 m	s		
 ✓ /device:GPU:0 (pid 1) 									
Stream #7(Memset)									
Stream #13(Compute,MemcpyD2H,Mei									
Stream #14(MemcpyH2D)									
Stream #15(MemcpyD2H)									
 /host:CPU (pid 501) 									
 python3.9 			xecute_C	_c			sampling_routine		
		EagerExecute		EagerExecute		tf.fu	tf.function TFE_Py_Execut		Cancelable
		EagerLocalExecute:	EagerLo	EagerLocalExecute: MatrixInverse			EagerExecute		oute
		ValidateInputTypeA		EagerKernelExecute				EagerLocalExecute:	
		_Send input 0 from /jo	Kern	elAndDeviceFunc::Run					Eag
		c							Ker
Host Threads/1073739520									
✓ tf_Compute/-259879438									E

Use the trace_viewer to get an overall timeline of TF program.

Profiling: Tracing in TensorBoard

Use the trace_viewer to get an overall timeline of TF program.

Profiling: Common Performance Considerations

1. I/O

- Use designated TF functions
- Multithreading, for improved internode performance (future plan)
- 2. CPU to/from GPU data copies
 - Rewrite code with TF tensors
 - Overlap copy and computation
- 3. Precision
 - Consider mixed precision,
 - ...

Conclusions

Final remarks

Conclusions:

- Contribution to parallel and efficient implementation of HMSC-R package.
- Evaluation of performance using accelerators on Puhti
 - 6-70x speedup compared to sequential R implementation.

Future perspectives:

- Distributed compute with TensorFlow
 - tf.distribute.Strategy is a TensorFlow API that implements distributed training
 - Easy to use and switching between strategies:
 - MirroredStrategy and MultiWorkerMirroredStrategy
 - ParameterServerStrategy
- Experiment with mixed precision
 - FP16, FP32, FP64
 - BFloat16, TF32

Synthesis by Gleb

- 1. Ultimate goal faster analysis of species communities
 - Change model
 - Change fitting approach
 - Optimize numerical routines
 - Use more prominent backend
- 2. Porting block-Gibbs of Hmsc-R to GPU-compatible code
 - Almost full functionality of Hmsc-R is re-implemented in Python+TF
 - 2200 lines of sampler R code \longrightarrow 1300 lines of Python+TF
 - Many loops replaced with vectorized computation
 - Utilities for export and import from R interface to Python+TF sampler
- 3. Validating the new implementation lot of small errors!
- 4. Computational performance assessment
 - Up to $\times 30$ speed-up recorded. Can we get more?
 - Different speed-up in different models what affects?
 - NNGP and Polya-Gamma rely on non-TF libraries
 - Profiling with TensorBoard to identify untrivial bottlenecks
- 5. Tuning the code for efficiency on AMD GPU in Lumi-G
- 6. Developing a proper (automatic) code testing set-up

Perspectives for further development by Gleb

- 1. Porting HMSC features that are yet in developmental phase
 - Spatio-temporal modelling
 - Structured increases shrinkage
- 2. Parallel multi-GPU computing beyond independent Markov chains
 - Shorter but numerous chains?
 - Within chain multi-GPU utilization
 - Non-MCMC Bayesian fitting
- 3. Mixed precision
- 4. Design hybrid sampler
 - TensorFlow enables autodiff for free
 - Identify the typical bottlenecks of autocorrelation in Gibbs sampler
 - Augment the scheme with non-conjugate conditional samplers