
Unlocking GPU Potential: HMSC and LUMI-G for Ecology

Anis Ur Rahman1, Gleb Tikhonov2, Otso Ovaskainen1, Jari Oksanen2

1 University of Jyväskylä, Finland
2 University of Helsinki, Finland

email:anis.u.rahman@jyu.fi

Table of contents

1. Introduction and motivation

2. The task

3. Results

4. Conclusions

1

Introduction and motivation

The context

The HORIZON-INFRA-2021-TECH-01 project ”Biodiversity Digital Twin

for Advanced Modelling, Simulation and Prediction Capabilities.”

European research project:

• focused on development of pipelines for processing of massive

biodiversity data with LUMI, Europe’s fastest petascale supercomputer.

Contributions:

1. to better observe spatio-temporal changes in biodiversity,

2. to push limits of predictive biodiversity modelling, and

3. to provide infrastructure to drive long-term biodiversity research.

2

The context

The HORIZON-INFRA-2021-TECH-01 project ”Biodiversity Digital Twin

for Advanced Modelling, Simulation and Prediction Capabilities.”

European research project:

• focused on development of pipelines for processing of massive

biodiversity data with LUMI, Europe’s fastest petascale supercomputer.

Contributions:

1. to better observe spatio-temporal changes in biodiversity,

2. to push limits of predictive biodiversity modelling, and

3. to provide infrastructure to drive long-term biodiversity research.

LIFEPLAN – A Planetary Inventory of Life:

• establish current state of biodiversity across the globe, and

• generate accurate predictions of its future state under future scenarios.

2

Approaches to ”efficient” predictive modelling

A real need:

• Optimized operations/components for predictive modelling

• More traditional data processing for large-scale biodiversity data

• Digital twins for ecological research

3

Approaches to ”efficient” predictive modelling

A real need:

• Optimized operations/components for predictive modelling

• More traditional data processing for large-scale biodiversity data

• Digital twins for ecological research

3

Approaches to ”efficient” predictive modelling

A real need:

• Optimized operations/components for predictive modelling

• More traditional data processing for large-scale biodiversity data

• Digital twins for ecological research

Research questions

1. Can the computational performance of species distribution modeling be

significantly improved using GPUs?

2. How does parallelizing it impact the accuracy and precision?

3. What are the potential challenges and bottlenecks of the parallelization,

and how can they be mitigated?

3

The hardware platform – LUMI

Fastest in Europe and 3rd fastest globally (Top500 list published in Nov 2022).

• 550 petaflops theoretical peak

performance

• 32 TB memory

• 7 PB flash storage with extreme 2

TB/s bandwidth

• 30 PB object storage for staging

area

• 80 PB parallel file system

• Interconnection network:

• four 200 Gbit/s network

interconnect cards
4

The hardware platform – LUMI

Fastest in Europe and 3rd fastest globally (Top500 list published in Nov 2022).

LUMI-G: GPU partition

• 2560 nodes, each node includes:

• one 64 core AMD Trento CPU

and four AMD MI250X GPUs

• Concept LUMI-G node:

• GPU-first system with coherent

unified memory, and

• compute accelerator, not a

rendering GPU.

4

Why is then GPU computing not more widespread?

1. Diminishing returns

• existing CPU-optimized codebase

• expanding existing code makes more sense

• porting code is complicated

2. Lack of expertise

• GPU programming paradigm is different

• New programming languages (CUDA, OpenCL) and frameworks

(TensorFlow, PyTorch)

• more effort required to achieve previous performance

3. Lack of tools

• extensive set of tools CPU

• more support for distributed computing

5

What is TensorFlow

TensorFlow is an end-to-end open source framework for machine learning.

• capable of running on CPUs and/or GPUs

6

What is TensorFlow

TensorFlow is an end-to-end open source framework for machine learning.

• capable of running on CPUs and/or GPUs

Design principles:

1. Dataflow graphs of primitive

operators

2. Deferred execution: Symbolic

dataflow graph

3. Heterogeneous accelerators

6

The task

HMSC for community ecology

Hierarchical Modelling of Species Communities (HMSC) is a model-based

approach for analyzing community ecological data.

• Basic input data for analyses:
• a matrix of species occurrences or abundances Y ,and

• a matrix of environmental covariates X .

• Optional input data:
• species traits T ,

• phylogenetic relationships C , and

• spatiotemporal context of the sampling design (S and Π).

Ovaskainen et al. (2017), ”How to make more out of community data? A conceptual framework and its implementation as models and

software,” Ecology Letters. 7

The environment

The task:

1. Implement parameter updaters using Tensorflow,

2. Generate posterior samples based on Gibbs sampler, and

3. Evaluate a sample models.

8

The environment

The task:

1. Implement parameter updaters using Tensorflow,

2. Generate posterior samples based on Gibbs sampler, and

3. Evaluate a sample models.

Figures of interest:

1. Performance. Assess the performance improvement achieved by

parallelizing the R-package for species distribution modeling on GPUs

using TensorFlow.

2. Accuracy. Evaluate the impact of parallelization on the accuracy of

species distribution modeling predictions.

3. Scalability. Assess the scalability of the parallelized R-package on GPUs

using TensorFlow.

4. Comparative. Conduct a comparative evaluation of the parallelized

R-package with other existing species distribution modeling packages or

frameworks.

8

Methodology

We evaluate parallel HMSC implementation for:

model sampling units species covariates traits random levels pylogeny spatial method

M1 48 160 3 3 5 [x] Null

M2 1974 284 6 1 2 [x] Null

M3 5097 68 5 1 3 [] Null

M4 2836 2 8 1 1 [x] NNGP

M5 2836 2 8 1 1 [x] GPP

M6 2326 81 4 1 2 [] Full

M7 2326 81 39 1 2 [] Full

Experimental runs: on Puhti AI partition

• 80 GPU nodes with total peak performance of 2.7 petaflops.

• Each node has four Nvidia Volta V100 GPUs with 32 GB of memory

each.

Configurations: nChain = 8; nSamples = 250; thinning = 10; transient =

2500 (total 5000 iterations per chain)

9

Results

Performance comparison: CPU-GPU (on Puhti)

M1 M2 M3 M4 M5 M6 M7

0

0.5

1

1.5

·105

Models

T
im

e
(s
ec
)

TF-GPU TF-CPU R

model TF-GPU (s) TF-CPU (s) R (s) speedup

M1 7159.1 56542.5 50806.9 7x

M2 1481.6 66367.5 72435.4 49x

M3 483.3 2415.3 8712.1 18x

M4 4828.1 4352.5 27403.4 6x

M5 357.2 6539.6 12562.7 35x

M6 863.0 15409.3 5708.8 7x

M7 2474.3 12078.5 177423.2 72x

10

Scalability - Varying the number of species

4 100 500 1000

0

1

2

·104

species

T
im

e
(s
ec
)

TF-GPU TF-CPU R

species TF-GPU (s) TF-CPU (s) R (s) speedup

4 212.9 237.1 122.4 -

100 236.8 345.5 2698.5 11x

500 257.4 1316.6 14635.2 57x

1000 281.2 2506.5 27208.0 97x

11

Profiling: Analyzing Profiles in TensorBoard

Performance improvement heuristics are often provided with links to more

detailed information.

12

Profiling: Analyzing Profiles in TensorBoard

Performance improvement heuristics are often provided with links to more

detailed information.

12

Profiling: Tracing in TensorBoard

Use the trace viewer to get an overall timeline of TF program.

13

Profiling: Tracing in TensorBoard

Use the trace viewer to get an overall timeline of TF program.

13

Profiling: Common Performance Considerations

1. I/O

• Use designated TF functions

• Multithreading, for improved internode performance (future plan)

2. CPU to/from GPU data copies

• Rewrite code with TF tensors

• Overlap copy and computation

3. Precision

• Consider mixed precision,

• ...

14

Conclusions

Final remarks

Conclusions:

• Contribution to parallel and efficient implementation of HMSC-R package.

• Evaluation of performance using accelerators on Puhti

• 6–70x speedup compared to sequential R implementation.

Future perspectives:

• Distributed compute with TensorFlow

• tf.distribute.Strategy is a TensorFlow API that implements distributed

training
• Easy to use and switching between strategies:

• MirroredStrategy and MultiWorkerMirroredStrategy

• ParameterServerStrategy

• Experiment with mixed precision

• FP16, FP32, FP64

• BFloat16, TF32

15

Synthesis by Gleb

1. Ultimate goal — faster analysis of species communities

• Change model

• Change fitting approach

• Optimize numerical routines

• Use more prominent backend

2. Porting block-Gibbs of Hmsc-R to GPU-compatible code

• Almost full functionality of Hmsc-R is re-implemented in Python+TF

• 2200 lines of sampler R code −→ 1300 lines of Python+TF

• Many loops replaced with vectorized computation

• Utilities for export and import from R interface to Python+TF sampler

3. Validating the new implementation — lot of small errors!

4. Computational performance assessment

• Up to ×30 speed-up recorded. Can we get more?

• Different speed-up in different models — what affects?

• NNGP and Polya-Gamma rely on non-TF libraries

• Profiling with TensorBoard to identify untrivial bottlenecks

5. Tuning the code for efficiency on AMD GPU in Lumi-G

6. Developing a proper (automatic) code testing set-up

16

Perspectives for further development by Gleb

1. Porting HMSC features that are yet in developmental phase

• Spatio-temporal modelling

• Structured increases shrinkage

2. Parallel multi-GPU computing beyond independent Markov chains

• Shorter but numerous chains?

• Within chain multi-GPU utilization

• Non-MCMC Bayesian fitting

3. Mixed precision

4. Design hybrid sampler

• TensorFlow enables autodiff for free

• Identify the typical bottlenecks of autocorrelation in Gibbs sampler

• Augment the scheme with non-conjugate conditional samplers

17

	Introduction and motivation
	The task
	Results
	Conclusions

