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Biodiversity policy and science

Interconnectedness between societal and economic SDGs ensuring a healthy
biosphere

"Credit. Stockholm Resilience Center, Stockholm University
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Biodiversity policy and science

Biodiversity in Critical Decline

R\ US $ 44tn
Economic value generation
moderately or highly
dependent on nature'

80% UN SDG
Targets threatened by
declines in biodiversity
leading to systemic risk?
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TSource: Leclére et al, Nature, 2020



Biodiversity policy and science

Kunming-Montreal Global Biodiversity Framework

Themes and Targets
1. Reducing land- and sea-use change

23. Ensure gender equality
2. Restoration of degraded ecosystems

22. Respecting rights and cultures of Indigenous
peoples and local iti

]
21. Ensure data, information and
knowledge, are accessible to decision h m y @ m “ﬂk’ iy speties extiucrions 2
< reducing extinction risk
o 1 -
S PTIRAN

makers, practitioners and the public
K 5. Harvesting and trade of wild species

3. Protect and conserve areas

14

20. Strengthen capacity-building and -
technical and scientific cooperation >
® - e :
19. Substantially and progressively Global . 0 6. Managing invasive alien species
increase the level of financial resources ! B |0d iVerS |ty 7. Reducing negative impact of
| @ & ~ & pollution on biodiversity
18, Idermfv and eli'minat‘e, phase out or =) Framework — —
reform incentives, including subsidies x © -}?_- 8. Minimize impacts of climate change
% a d ts of climate change
17. Establish, strengthen capacity for, “ e 25 K w ; .
and implement biosafety measures (] 4 3 » ‘é’i, & 9. Management of wild species
as set out in Article 8(g)
% w / 10. Agriculture, aquaculture, fisheries,
16. Encourage and enable and forests are sustainably managed
sustainable consumption choices [ e
N . e 11. Restore, maintain and enhance nature’s contributions
15. Integrate legal, administrative or policy 1o people, including ecosystem functions and services
measures within business and financial institutions
. ) . ) 12. Urban blue and green spaces
14. Integrate biodiversity and its multiple values into
policies, ions, planning and processes
13. Fair and equitable sharing of genetic resources and DSI

"Credit: Environment and Climate Change Canada
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What can Al do

s

4847

Monitoring
steps

Automated
L technologies

Acoustic wave recorders
Chemical recorders
Electromagnetic wave sensors

1. Data collection

Sensor networks
Wireless sensors

2. Storage & Transfer

Computer audition & vision packages

3. Knowledge extraction ; .
Machine learning

Traits Abundances Distributions Interactions
Behaviour Phgflogy x 15 '6 -
L 5 Velooity G‘ x9 t ‘th
) B @ x22 ><: &
Mophometrics. M x48 - ® @ o

TSource. Besson et al. (2022) Ecol. Letters, 25: 2753-2775.
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Deep learning fundamentals

Data input Feature extraction Model building Model assessment
A A A A
Explicit _—
programming Input » Handcrafted model building » Output
Shallow
" Handcrafted Automated
ll'nach_lne Input » feature engineering » model building » Output
learning
Deep Input ®| Feature learning + automated model building » Output
learning

TJaniesch et al. (2021) Electron. Markets 31: 685-695.
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Deep learning fundamentals

Data input Feature extraction Model building Model assessment
—— - —
Explicit -
programming Input » Handcrafted model building » Output
Shallow
5 Handcrafted Automated
machAlne opLt » feature engineering * model building L Output
learning
Input Layer Hidden Layers Output
Deep Input
learning

O Neurons o
— Connections with ?l'l::llc‘;?::n
weight coefficients

"Janiesch et al. (2021) Electron. Markets 31: 685-695.
2Source. Hosseiny et al. (2020) Sci. Rep. 10: 8222.
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Deep learning fundamentals

Image detection & classification

remote
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ENVIRONMENTAL
PROTECTION

(URBANZATION
ENVIRONMENTAL |\ <A
MONITORING \ Ly ECOSYSTEM |
SERVICE
7
- 1

REMOTE

AGRICULTURE Y
SENSING | -,

IMAGE
ENHANCEMENT
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Source. Perry et al. (2022) Ecosystems 25: 1700-1718.
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Deep learning fundamentals

Several factors lead to the success of deep learning:
0% = argemin Exyenponll(x,y : 0)]

A optimization algorithm
0 model architecture
D large-scale dataset
l loss function



Deep learning fundamentals

Several factors lead to the success of deep learning:
0% = argemin Exyenponll(x,y : 0)]

A optimization algorithm
0 model architecture
D large-scale dataset
l loss function

Many deep learning studies assume that the dataset follows a balanced

class distribution.



Ecological realities

For instance, species are no simple objects to classify; their distribution and
abundance present a few challenges for deep learning.

1. Long-tailed dataset issue

2. Scarce data issue

3. Open world problem



Long-tailed dataset issue

Imbalanced distribution where some classes/observations are rare.

e certain species/populations occur infrequently, leading to skewed
distributions.

Challenges with Long-Tailed Ecological Data
e Model bias. Algorithms tend to favor majority classes, neglecting rare

observations.

e Reduced accuracy. Inadequate representation impacts predictive
performance.

e Misleading conclusions. Overlooking rare but critical
species/populations.



Long-tailed dataset issue

In real applications, training class distribution is often long-tailed.
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Long-tailed dataset issue: method taxonomy

Resampling

Class rebalancing — Class-sensitive learning

Logit adjustment

|

Transfer learning
m Information augmentation #

Data augmentation

Long-tailed learning

— Representation learning

Classifier design

—— Module improvement

— Decoupled training

——1 Ensemble learning




Long-tailed dataset issue

Class rebalancing, seeking to directly rebalance uneven classes, has three
main types:

1. Re-sampling

2. Class-sensitive learning

3. Logit adjustment



Long-tailed dataset issue

Class rebalancing, seeking to directly rebalance uneven classes, has three
main types:

1. Re-sampling resolves class imbalance by differentially sampling the
data from different classes.

n;j

C
Z/‘:1 N
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2. Class-sensitive learning

3. Logit adjustment



Long-tailed dataset issue

Class rebalancing, seeking to directly rebalance uneven classes, has three

main types:

1. Re-sampling
2. Class-sensitive learning seeks to re-balance classes by adjusting loss
values for different classes during training.

_ ) —ali=p)'log(p)  y=1
FL(D) - { —(1 . a)p"/[og('l — p) otherwise

3. Logit adjustment



Long-tailed dataset issue

Class rebalancing, seeking to directly rebalance uneven classes, has three
main types:

1. Re-sampling
2. Class-sensitive learning

3. Logit adjustment seeks to obtain a large relative margin between
classes by post-hoc shifting the model logits via label frequencies.

LA(p) = —log(o(p + 7 * 7m) y=1
—log(1—o(p + 7+ mm) otherwise



Long-tailed dataset issue

Information augmentation based methods seek to introduce additional
information into model training by:

1. Transfer learning

2. Data augmentation

"Source. He et al. (2020) ICLR.



Long-tailed dataset issue

Information augmentation based methods seek to introduce additional
information into model training by:

1. Transfer learning transfer knowledge from a source domain (e.g,,
datasets, tasks) to enhance model training on a target domain.

Fine-Tuning
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2. Data augmentation

"Source. He et al. (2020) ICLR.



Long-tailed dataset issue

Information augmentation based methods seek to introduce additional
information into model training by:

1. Transfer learning transfer knowledge from a source domain (e.g,,
datasets, tasks) to enhance model training on a target domain.

_ Performance gap
+ on validation set
+
.. l w1 Unified Model
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Sort using Experts’ ) Curriculum Learning
confidence
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2. Data augmentation

"Source. He et al. (2020) ICLR.



Long-tailed dataset issue

Information augmentation based methods seek to introduce additional
information into model training by:

1. Transfer learning transfer knowledge from a source domain (e.g,,
datasets, tasks) to enhance model training on a target domain.

Self-Training

2. Data augmentation

"Source. He et al. (2020) ICLR.



Long-tailed dataset issue

Information augmentation based methods seek to introduce additional
information into model training by:
1. Transfer learning

2. Data augmentation pack a set of augmentation techniques to enhance
the size and quality of datasets for model training.

"Source. He et al. (2020) ICLR.



Long-tailed dataset issue

Module improvement based methods handle long-tailed problem by
improving network modules.

1. Representation learning

2. Classifier design

3. Decoupled training

4. Ensemble learning

"Source. Li et al. (2022) CVPR.



Long-tailed dataset issue

Module improvement based methods handle long-tailed problem by

improving network modules.

1. Representation learning improves the feature extractor

During Training:

sample
Input Predicted  Desired

[ [ -

 encoding = ~Decoding _,
(memssmm {Generaﬁon)

Middle layer

Objective is to predict (or generate) images from the
most compressed representation in the middle layer

2. Classifier design
3. Decoupled training
4. Ensemble learning

"Source. Li et al. (2022) CVPR.

After Training:

X

Image ; Representation

We discard all layers used
for generating images )

=



Long-tailed dataset issue

Module improvement based methods handle long-tailed problem by
improving network modules.

1. Representation learning

2. Classifier design This category designs various classifiers to handle
long-tailed issues

3. Decoupled training

4. Ensemble learning

"Source. Li et al. (2022) CVPR.



Long-tailed dataset issue

Module improvement based methods handle long-tailed problem by
improving network modules.

1. Representation learning
2. Classifier design

3. Decoupled training decouples the learning procedure into
representation learning and classifier training

Downstream Task

Feature
Extraction

Stagel
L —
Stage2

4. Ensemble learning

"Source. Li et al. (2022) CVPR.



Long-tailed dataset issue

Module improvement based methods handle long-tailed problem by
improving network modules.

1. Representation learning
2. Classifier design
3. Decoupled training

4. Ensemble learning based methods strategically learn multiple network
experts to solve long-tailed problems

() Training (b) Testing

"Source. Li et al. (2022) CVPR.
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Scarce data issue

Rarity is an intrinsic characteristic of biodiversity, with most communities
composed of a large number of rare species.

e observed in species-rich assemblages like coral reef fishes, where most
species are demographically rare.

e for deep learning, species rarity implies a lack of training data for a
large part of species.
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'Source. Enquist et al. (2019) Sci. Adv. 5(11): eaaz0414
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Scarce data issue

1. Meta-training.
2. Metric learning.

Source. Gevaert (2021) British J. Cancer 125: 309-310
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Scarce data issue

1. Meta-training. Training a model on a variety of tasks or datasets to
develop a generalized learning procedure.

- Enable the model to learn how to learn, acquiring meta-knowledge
(generalizable patterns or parameters) for fast adaptation to new tasks.

Pre-train

[ X ] [ X ]
Tk 90000
Source data (abundant) Pretrained network

Transfer of knowledge

Fine-tune

Time

Target data (limited) Finetuned network Clinical outcome

Sunival probabity

2. Metric learning.

Source. Gevaert (2021) British J. Cancer 125: 309-310
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Scarce data issue

1. Meta-training.
2. Metric learning. to optimize feature representations and improve model

performance despite scarce data.
- learning a distance metric that measures similarity or dissimilarity between
instances in a dataset.

Supervised Learning

Dataset

Query Set Predictions

Similarity.
| Function

Query Set

Source. Gevaert (2021) British J. Cancer 125: 309-310
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Scarce data issue

Anchor Image

(]

Deep Network

Negative Image
N SNN
Topl  Top3  TopS  Topl  Top3 Tops.

Species Accuracy Accuracy  Accuracy  Accuracy  Accuracy  Accuracy
5-100annotatedcalls  83.5%  9025%  9221%  85.77%  93.19%  95.40%
(Includes 35 species)
520 annotated calls 5369%  67.89%  7579%  7316%  90.00%  93.69%
(Includes 13 species)
5-10 annotated calls 3529%  6471%  8235%  60.00%  80.00%  90.59%

(Includes 7 species)

Source. Zhong et al. (2023) bioRxiv.



Open world problem

Open Long-tailed Recognition
Imbalanced Classification
%
Open World
Few-shot Learning;
—_—
Head Classes T Tail Classes Open Classes

Managing the open-world problem in classification involves handling
situations where the classifier needs to distinguish between known and
unknown classes during inference.

"Source. Liu et al. (2019) CVPR.



Open world problem

Open set recognition techniques

1.

Thresholding. Set confidence thresholds to reject samples falling below
a certain confidence level, labeling them as unknown or
out-of-distribution.

. Distance metrics. Utilize distance-based methods to measure similarity

between test samples and known classes. Samples distant from known
classes are treated as unknown.

. One-class classifiers. Train models specifically to recognize known

classes, ignoring unknown instances during training.

. Augmented training data. Augment training data by generating samples

resembling unknown classes or diverse variations within known classes.
Techniques like generative models (GANS) or oversampling rare classes
can be used.

. Representation learning. Utilize methods that create embedding spaces

where known classes cluster together, enabling identification of
unknown samples lying outside these clusters.

. Active learning. Human-in-the-loop strategy involve human annotators

in the loop to label and incorporate new classes or instances into the
classification space. 20



Example
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Source. Liu et al. CVPR19.
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Model interpretability, explainability and causality

Explainable artificial intelligence (xAl) is the process of understanding how
and why a machine learning model makes its predictions.

Global level model assessment Local level model assessment

Conventional assessment Conventional assessment

00 02 04 No such method exists
Using xAl: Local Interpretable Model-agnostic Explanation
m Habitat suitability = 1.00

Why did the model make this prediction?

Vot for  Vote for
bsence | presence ~Site condition

065 < Temperaure seasonaity
Mean temperaura of driest quarter < -0.76
Mean temperature of coldest quarter < -0.72.
Precipitation of wettest month < -0.72
Isothermality < -0.36

10s

Habitat
suitability
may

2 ot
Veraio mporiance maasuro

m Habitat suitability = 0.75

Why did the model make this prediction?

Vol for  Vote for
30| African elephant absence | presence ~Site condition

(Loxodonta africana) . 065 < Temperature seasonaity
T 3 we Ed [ 021 < Precipiation of driest quarter < 0.78

: Isosthernaity < -0.86
Model performance: Testing AUC = 0.98

Precipitation o driest monh < ~0.45
Using xAl: permutation importance & partial dependence plot

0.75+ Tomperature annual range.
Which variables are important?  How variables are associated? GETBAE IO

Why did the model make this prediction?

1Y

2 00 o
Variabe mporiance maseire

L. Voto for  Vole for
g SEkonce | resence St conditon
i G o 2 0.15 < Preciptation of driest quarter
Mean tomporature of diest quarter g 007 < Procpitation ofdrest morth
Precipiation of wettest month San Precipiation seasonalty < ~0.75
Tomperature seasonaliy £ 027 < Moan temperature of coldes quarter <084
LR . ~081 < Temperatur seasonaify < -0.30
o = © % 0 S om D
Relative variable Importance measure Precipiation of wettest quarler

'Source. Ryo et al. (2020) Ecography, 44: 199-205.
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Concluding remarks

1. Complexity of ecological realities
- Deep learning presents immense potential for ecological insights but
confronts challenges in accommodating the complexity, rarity, and dynamic
nature of ecological datasets.
2. Need for robust adaptation
- Collaboration and innovation are pivotal in overcoming these challenges,
paving the way for more accurate and robust deep learning applications in
ecological studies.
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Thank you for your attention!
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