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GPUs and vision systems

Case study: Visual attention model
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Vision systems

Sub-field of Computer vision

To build artificial systems

Involves large sets of data

Same set of operations on it
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Case study: Visual saliency model

To find the spotlight of focus

Based on human visual system

Bottom-up model

Implements both pathways

Some applications:

To automate cinematography,
surveillance, and video
reframing
To simulate mediated reality
To find ROI maps
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Saliency map

(a) Original image (b) Ms

(c) Md (d) Saliency map
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Characteristics of such applications

Storage and memory usage

Performance

Requires real time capability
Involves complex computations

Data parallelism

Single operation on huge data
No or less dependency

GPU friendly operations

Previous attempts made required:

Learning graphics specific APIs
Re-structuring of algorithms according to the graphics pipeline
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Why use GPU as co-processor?

Stream processing architecture

All processors work in groups
Can communicate through shared memory

Performance is unmatched

Very high memory bandwidth

Accessible

Easier to program and manage

Already applied in diverse fields

Biological engineering
Oil and gas exploration
Financial analysis
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To port data-parallel vision algorithm

To demonstrate the speedup

To confirm effects of low precision

To apply different optimizations

To experience the difficulties
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The programming model(2)

The programming model

CUDA(Compute Unified Device
Architecture)

Independent of traditional graphics APIs
Based on:
Arithmetic intensity = Arithmetic /
Bandwidth
Uses familiar C

Allows access to on-chip shared memory

Provides texture lookups

Supported by GPU-specific libraries

CUFFT, CUDPP, CuBLAS, OpenVIDIA
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The programming model

Code is composed of:

Host code
Kernel code

Two-level thread hierarchy

2D grid of thread blocks
Each thread block is 3D grid of threads

Making the code scalable
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How to program?

Restructuring the algorithm

Identifying the data-parallel portions

Avoiding code divergence

Effective use of memory model

Constant cache for persistent data values

Texture cache for frequently accessed data values

Shared memory to reduce multiple accesses to global memory
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Other options

Using NVCC compiler options

–use fast math: to use CUDA fast math functions

–arch sm 13: to enable double precision (if supported)

Using GPU-specific libraries

GPU-specific functions

Black-box algorithm
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Example: Interactions kernel

1 __global__ void ShortInteractionKernel ( Complex* in, unsigned int width

2 ,unsigned int height , float* out) {

3 __shared__ float maps[ NO_OF_ORIENTS * NO_OF_BANDS ][32];

4 __shared__ float buf [72];

5
6 unsigned int x1 = blockIdx.x*blockDim.x + threadIdx.x/2;

7 unsigned int x2 = blockIdx.x*blockDim.x + threadIdx.x;

8 unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;

9
10 if ( x1 >= width || x2 >= width || y>= height) return;

11
12 unsigned int mod = threadIdx.x1%2;

13 unsigned int pt = threadIdx.x1/2 + 40* mod;

14 unsigned int size = width*height;

15
16 for ( unsigned int j=0 ; j< NO_OF_ORIENTS ; ++j) {

17 for ( unsigned int i=0 ; i< NO_OF_BANDS ; ++i) {

18 /* ************************************************************

19 * 32 threads process 16 complex numbers in parallel

20 * every thread stores them with real and imaginary interlaced

21 * 32 threads produce 32 real products in parallel

22 ************************************************************ */

23 buf[pt] = // first 16 complex numbers

24 in[(j* NO_OF_BANDS+i)*size+(y*width+x1)][mod ]/( float)(size);

25 buf[pt+16] = // next 16 complex numbers

26 in[(j*NO_OF_BANDS+i)*size+(y*width+x1+16)][mod ]/( float)(size);

27 __syncthreads ();

28
29 maps[j* NO_OF_BANDS + i][ threadIdx.x] = abs(

30 buf[threadIdx.x ]*buf[threadIdx.x ] +

31 buf[threadIdx.x + 40]* buf[threadIdx.x + 40]);

32 __syncthreads ();

33 }

34 }

35 // prefetched data in shared memory is used by interactions

36 }



Speedup

Figure: Speedup for the visual saliency model



Profile

Table: Computational cost of each step in static pathway

Kernel Geforce GTX 260 Geforce 8800 GTS
(ms) (ms)

Mask 0.08 0.57
FFT 0.59 1.36
Shift 0.09 0.21
24×Gabor 1.47 6.31
24×Inverse shift 1.13 2.66
24×IFFT 10.76 32.54
24×Interaction 3.13 7.06
24×Normalize 3.33 25.27
24×Normalize Itti 3.34 25.37
24×Normalize Fusion 2.89 21.90

Total 26.81 123.24



Profile

Table: Computational cost of each step in dynamic pathway

Kernel Geforce GTX 285
(ms)

Retinal Filtering 21.5
Modulation 2.6
Demodulation 3.1
Interpolation 0.3
Projection 0.2
Ver. Guassian recursive 33.2
Hor. Guassian recursive 21.7
Gradients 6.2
MCPI 39.1
Median filtering 0.2

Total 128.1



Precision

Figure: The effect of lower precision support on the result

Universal image index = Q = 99.66%



Profile

Figure: Profiling graph for the dynamic path



Multi-GPU solution

Figure: Block diagram of multi-GPU model
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Issues

Issues

Memory size

Only one image loaded to GPU, due to lack of GPU memory

Causes frequent context switching

CPU-GPU memory transfer i.e. one image per pass

Precision

Doesnt fully conform to IEEE-754 standard

Yet no full support for double precision

Can lead in unusable results, due to lower accuracy

Lower precision can be resolved using mixed precision
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Conclusion

Real time capability (∼28 fps)

Created opportunity to extend the model

Exploited GPUs power without extensive re-structuring

Without the need for high precision
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