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Visual perception

"Visual perception is the ability to interpret information and surroundings
from visible light reaching the eye.”

Modeling approach

o Forward: by study of natural system

o Reverse: by building artificial system
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Visual perception

Importance to model vision

@ to understand the properties of natural vision
o to create an efficient and robust vision system

@ to explore its potential for numerous applications

Importantly, it will be a step towards building brains.
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Towards a robust vision system

Modeling issues
@ involve a lots of parameters to test i.e. large number of neurons
@ are complex and compute-intensive

@ are difficult to study and to improve
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Towards a robust vision system

Modeling issues

@ involve a lots of parameters to test i.e. large number of neurons

@ are complex and compute-intensive

@ are difficult to study and to improve

v

Potential for streaming architectures

@ the algorithms are embarrassingly parallel

@ are well-suited due to excellent arithmetic intensity

@ exhibit 2D/3D locality

The trick of this trade is how to leverage their potential for visual
perception, the objective of my thesis.
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isual saliency model

Type of attention model
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Some applications:

o To automate cinematography,
surveillance, and video
reframing

o To simulate mediated reality

o To find ROI maps

©

Temporal filtering
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Saliency map

Static saliency map

Input image

Master saliency map

Dynamic saliency map



| saliency model

o linearly modeled all the way from the retina to cortical cells

o separation of useful information into two distinct signals
that are more efficient to process

@ motion compensation estimates and eliminates the camera
motion

@ motion estimation is used to carry out the motion contrast
map
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e problem

exhibit data parallelism — single operation on huge data with
no or less dependency
— slower performance — complex computations involving high
storage and memory usage

4

Requires real time capability
To provide interactivity
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lated work

o Itti [2002] and Ouerhani [2003] achieved real-time but by
simplification of the model

o Longhurst [2006], Peters [2007], Xu [2008] employed only
static modalities for the saliency map

o Lee et al. [2007] use both static and dynamic modalities but
in a virtual environment

Itti, L.: Real-time high-performance attention focusing in outdoors color video streams. HVEI (2002)

Lee, S. et al.: Real-time tracking of visually attended objects in interactive virtual environments. VRST (2007)
Longhurst et al.: A gpu based saliency map for high-fidelity selective rendering. AFRIGRAPH (2006)

Ouerhani, N. et al.: Real-time visual attention on a massively parallel simd architecture. Real-Time Imaging (2003)
Peters, C.: Toward 3D selection and skeleton construction by sketching. Eurographics Ireland (2007)

Xu, T. et al.: Looking at the surprise: bottom-up attentional control of an active camera system. ICARCV (2008)
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o To port data-parallel vision algorithm

@ To demonstrate the speedup

@ To confirm effects of low precision

o To apply different optimizations

o To experience the difficulties

o To incorporate other processes into the model

o To demonstrate the usability of the saliency maps

o To automate the process of porting and optimization
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PU as co-processor

o Stream processing architecture

o Programmability -

o Precision i

o Power |
o New shared memory and synchronization
@ Provides texture lookups
o Very high global memory bandwidth :
o Accessible, easier to program and manage
o Supported by GPU-specific libraries like

wc PG | TPC
Theead Dispatcher
Global memory

CUFFT, CUDPP, CuBLAS, GpuCV
o Already applied in diverse fields
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Porting onto GPU

relatively easier to port on to GPU

Computer vision algorithms usually comprise of a sequence of filters, hence they are J

@ Review Port to Make Evaluate using no @
references C + CUDA optimizations benchmarks
y
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Porting onto GPU

relatively easier to port on to GPU

Computer vision algorithms usually comprise of a sequence of filters, hence they are J

@ Review Port to Make Evaluate using no @
references C + CUDA optimizations benchmarks
y

4

@ Use texture & shared memory

(4]

Global memory coalescing

@ Decrease & optimize use of
shared memory

@ Substitute math operations

@ Remove if and for
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Porting onto GPU

relatively easier to port on to GPU

@ Review Port to Make Evaluate using no @
references C + CUDA optimizations benchmarks
y

Computer vision algorithms usually comprise of a sequence of filters, hence they are J
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Multi-GPU platform
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Porting onto GPU

Multi-GPU platform

Anis RAHMAN



Effects of lower precision

® Dynamic pathway

Sppedup (times)

® Static pathway
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Figure: Speedup for the visual saliency model
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Performance gains
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o Real time capability (~25 fps)

o Created opportunity to extend the model
o Exploited GPUs power without extensive re-structuring

o Without the need for high precision
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@ to evaluate GPU power consumption

@ to measure bandwidth between host and device memories

©

to study peak performance single, or multiple CPU-GPU nodes

@ to test using different precisions, and various benchmarks

©

to evaluate different GPU programming languages and toolkits

Rhone-Alpes CIBLE project in collaboration with LaHC St. Etienne.
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Parallel implementation
Results

plan(1)

@ to evaluate GPU power consumption

@ to measure bandwidth between host and device memories

@ to study peak performance single, or multiple CPU-GPU nodes
@ to test using different precisions, and various benchmarks

@ to evaluate different GPU programming languages and toolkits

Rhone-Alpes CIBLE project in collaboration with LaHC St. Etienne.

o to take advantage of the multicore CPUs (OpenMP)

o to support different interconnection networks (OpenMPI)
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Future plan(2)

Inclusions in the pathway
@ to investigate and model the inclusion of sound

@ to contribute to robustness of the exiting model
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Future plan(2)

Inclusions in the pathway

@ to investigate and model the inclusion of sound

@ to contribute to robustness of the exiting model

v

Creation of a library or tool

o to investigate the correctness of the model for decision making

@ to prepare a fast platform used by collaborators for
investigating videos
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Introduction
Parallel implementation

Results

Thank you for your attention!
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